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A B S T R A C T  

The performance of the S - 1 9 2  Multispectral Scanner is 
evaluated using the principles of modern communication theory. 
This method permits a unified treatment of the interrelated design 
questions of detector noise and frequency response, aperture size 
and scan rate, digital sampling, and system transient response. 

Quantitative estimates of expected performance are 
given for the class of ground radiance functions whose auto- 
correlation functions are exponential in the radius. Detector 
performance is treated parametrically and other system parameters 
have their design values. 

The principal results are: 

1. The optimum sampling rate for a channel whose detector 
just meets the noise specification is 1.3 samples per Instantaneous 
Field of View (IFOV). 

2 .  The present S-192 design sampling rate for five of the 
thirteen channels is 1.1 samples per IFOV. Because the total 
system error has a shallow minimum, the design sampling rate 
is close to optimum. 
held in some quarters that the S-192 system is digital data 
bandwidth limited. 

This result is in opposition to the view 

. 
3 .  

samples per IFOV does not improve system performance. 
Sampling the remaining eight channels at a rate of 2 . 2  
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1 . 0  INTRODUCTION 

1.1 Genera l  

Th i s  paper  i s  devoted t o  t h e  a p p l i c a t i o n  of  t h e  

p r i n c i p l e s  of modern s t a t i s t i c a l  communication t h e o r y  t o  t h e  

performance a n a l y s i s  of t h e  S-192 M u l t i s p e c t r a l  Scanner 

system. Th i s  method en joys  t h e  advantage  of p rov id ing  a 
u n i f i e d  t r e a t m e n t  of t h e  i n t e r r e l a t e d  d e s i g n  q u e s t i o n s  of detector 
n o i s e  and f requencv  r e sponse ,  a p e r t u r e  s i z e  and scan  r a t e ,  
d i g i t a l  sampling r a t e , a n d  system t r a n s i e n t  r e sponse .  I n  o r d e r  

t o  p r o v i d e  a b a s i s  fo r  a pa rame t r i c  s t u d y ,  a system performance 

measure must be e s t a b l i s h e d .  Image q u a l i t y ,  t h a t  i s  t h e  

a b i l i t y  of t h e  system t o  a c c u r a t e l y  view, r e c o r d r a n d  r e c o n s t r u c t  

a g i v e n  ground s c e n e , i s  t h e  q u a l i t a t i v e  d e s c r i p t i o n  of system 

performance.  The b a s i c  d i f f e r e n c e  between t h e  approach used 

i n  t h i s  paper  and c u r r e n t  p r a c t i c e  f o r  S-192 i s  t h e  method of 

q u a n t i f y i n g  or measuring image  q u a l i t y .  
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1 . 2  Cur ren t  S -132  System Performance S p e c i f i c a t i o n  

One s p e c i f i c a t i o n  of image q u a l i t y  f o r  S-192 i s  Noise 

Equ iva len t  change i n  Ref lec tance  ( N E A P ) .  The End I t e m  S p e c i f i c a t i o n  

f o r  S-192 [1]* p l a c e s  an upper l i m i t  on NEAp f o r  t h e  f i r s t  1 2  

bands of 1.0%.** I n  i t s  narrowest i n t e r p r e t a t i o n ,  N E A p  can be 

r e s t r i c t e d  t o  be a measure of d e t e c t o r  performance only  [ 2 ] .  The 

wider i n t e r p r e t a t i o n  of N E A p  can i n c l u d e  such o v e r a l l  system 

p r o p e r t i e s  a s  d e t e c t o r  e l e c t r o n i c s  ( i n c l u d i n g  boos t  c i r c u i t s ,  

f i l t e r s ,  p r e a m p l i f i e r s )  and no i se  sou rces  o t h e r  than  t h e  d e t e c t o r  

i t s e l f  [ 3 , 4 ] .  B a s i c a l l y ,  NEAP i s  an i n v e r s e  s i g n a l - t o - n o i s e  

r a t i o  and i t  r e p r e s e n t s  an important  f i r s t  s t e p  i n  e s t i m a t i n g  

r e q u i r e d  d e t e c t o r  p r o p e r t i e s .  I t s  major l i m i t a t i o n  as  a measure 

of system performance i s  t h a t ,  by i t s e l f ,  i t  i s  n o t  f l e x i b l e  

enough t o  p rov ide  t h e  kind of t r a d e - o f f  c a p a b i l i t y  r e q u i r e d  i n  

d e s i g n  and a n a l y s i s .  For example, N E A p  can be e a s i l y  reduced 

by p rov id ing  s t r o n g e r  p o s t  d e t e c t o r  f i l t e r i n g .  However, such 

improvement i n  N E A p  i s  taken  a t  t h e  expense of t h e  system f i d e l i t y  
c a p a b i l i t y .  N E A p  does no t  provide a Proper  t r ade -o f f  p o i n t .  To 

i n s u r e  f i d e l i t y ,  t h e  N E A p  s p e c i f i c a t i o n  can be supplemented wi th  

some s p e c i f i c a t i o n  on system bandwidth p r o p e r t i e s ,  a s  i s  done f o r  

S - 1 9 2 .  It i s  n o t  easy t o  do t h i s  q u a n t i t a t i v e l v  wi th  t h e  t r a d e -  
o f f  c l e a r l y  v i s i b l e .  

1.3 Proposed Approach 

The most g e n e r a l  approach t o  q u a n t i f y i n g  image q u a l i t y  

would appear  t o  be  a comparison of t h e  a c t u a l  system i n p u t  w i th  

*Square b r a c k e t s  i n d i c a t e  References. 

**The t h i r t e e n t h  band i s  t h e  thermal  band and w i l l  n o t  be 

cons ide red  h e r e .  
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system o u t p u t ,  and t h i s  i s  u s u a l l y  c a r r i e d  o u t  i n  a mean 

squared  s e n s e .  Tha t  i s ,  i f  T ( x , y )  i s  t h e  a c t u a l  r a d i a n c e  

of t h e  ground scene  and T ' ( x , y )  i s  t h e  r a d i a n c e  as viewed, 

r eco rded  and r e c o n s t r u c t e d  by t h e  system, t h e n  a normalized 

e r r o r ,  E ,  i s  d e f i n e d  by 
- 

where ff i s  t h e  mean ground r a d i a n c e .  E q .  (1.1) r e p r e s e n t s  t h e  

c l a s s i c a l  mathemat ica l  d e f i n i t i o n  of a normalized r o o t  mean 

squa red  ( r m s )  e r r o r  and a l l  r e f e r e n c e  i n  t h i s  paper  t o  r m s  e r r o r  

i s  based  on Eq. (1.1). I f  t h e  system i n p u t  w e r e  d e t e r m i n i s t i c ,  

Eq. (1.1) cou ld  be used d i r e c t l y .  However, it i s  i n d i c a t e d  i n  

S e c t i o n  3 .2  t h a t  a s t o c h a s t i c  model of ground r a d i a n c e  a p p e a r s  

t o  b e  more d e s i r e a b l e  and i s  t h e r e f o r e  employed. Thus, au to -  

c o r r e l a t i o n  f u n c t i o n s ,  F o u r i e r  a n a l y s i s  and power s p e c t r a l  
d e n s i t y  f u n c t i o n s  must be in t roduced  t o  e v a l u a t e  Eq. (1.1). 

A p p l i c a t i o n  of t h e  l a t t e r  t echn iques  t o  e l e c t r o - o p t i c a l  systems 
h a s  a s t r o n g  t e c h n i c a l  founda t ion  [5 ,6 ,7,8,91.  

1 . 4  O r u a n i z a t i o n  

S e c t i o n  2 d e f i n e s  t h e  t e r m s  and i n t r o d u c e s  t h e  
c o n c e p t s  r e q u i r e d  f o r  t h e  t h e o r e t i c a l  a n a l y s i s  i n  S e c t i o n  3 .3 .  

S e c t i o n s  3 . 1  and 3.2 a r e  general  d e s c r i p t i o n s  of t h e  system 

model. S e c t i o n  4 d i s c u s s e s  t h e  d e t a i l s  of t h e  a c t u a l  S-192 

sys tem components and S e c t i o n s  5 and 6 c o n t a i n ,  r e s p e c t i v e l y ,  

t h e  r e s u l t s  and c o n c l u s i o n s .  For  t h e  r e a d e r  n o t  i n t e r e s t e d  i n  

t h e  d e t a i l e d  t h e o r e t i c a l  a n a l y s i s ,  it i s  n e c e s s a r y  t o  r e a d  on ly  

S e c t i o n s  3 . 1  and 3.2,  S e c t i o n  4 . 1 1 ,  S e c t i o n  5 ,  and S e c t i o n  6 .  
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2.0 REVIEW OF CONCEPTS AND DEFINITIONS 
2.1 Fourier Transform Pair 

The two dimensional Fourier transform pair used in 
this paper is: 

Y 

-271-j (kxx+k 
H(kx,ky) = 11 h (x,y) e yy dxdy 

-a) 

and 

J 2 1 ~ j  (kxx+k y) 
dk dk 
X Y  h(x,y) = H(kx,k )e Y 

-0J 

The f~3ll~wi-n.g n o t a t i n n  will a l s o  he employed: 

2.2  Unit Impulse and Impulse Response Functions 
The unit impulse function, also termed the Dirac 

delta function, 6(x,y), is defined by 

-03 

* For more details see, for example, Papoulis [lo]. 
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6 (x. Y )  h (x ,  y )  
SYSTEM 

FIGURE 2.1 

I f  w e  s u b j e c t  a system or a component of t h e  system t o  a u n i t  

impulse  f u n c t i o n  as  shown i n  F i g u r e  2 . 1 ,  t h e n  t h e  o u t p u t  i s  
termed t h e  impulse r e sponse  f u n c t i o n ,  h ( x , y ) .  The impulse 

r e s p o n s e  f u n c t i o n  h a s  t h e  fo l lowing  p r o p e r t y .  

FIGURE 2.2 

I f  h ( x , y )  i s  t h e  impulse  response  f u n c t i o n  of  t h e  system i n  
F i g u r e  2 . 2 ,  and t h e  system i s  s u b j e c t e d  t o  a n  i n p u t  q i (X,y)  

t h e n  t h e  o u t p u t  i s  [ l o 1  

-m 

It i s  t h e r e f o r e  s u f f i c i e n t  t o  r e p r e s e n t  a system by i t s  impulse 
r e s p o n s e  f u n c t i o n .  
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2.3 System Transfer Function 
A system or a system component may also b represented 

by its transfer function. The transfer function is simply the 
Fourier transform of the impulse response function. Thus, if 
h(x,y) is the impulse response function, the system transfer 
function, H(kx,ky), is from Eq. (2.1) 

- W  

The advantage of representing a 
in certain cases, will be shmm 

2.4 Autocorrelation Function 
The autocorrelation fi 

g(x,y) is defined as 

system by its transfer 
-- later; --- 

nction, A (x,y), of a 
g 

x/2 Y/2 

function, 

ariable 

- x / 2  -Y/2 

Autocorrelation functions are most often used to describe random 
variables [9]. Note the important property that 

-x/2 -Y/2 
- 
2 where g is the mean square value of g(x,y), assuming the mean 

square value exists. An alternate representation for A (x,y) is g 
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where E{ 1 represents the "expected value" operation and the 
"+" subscript indicates that the second g is incremented 
(just as in Eq. 2.5). 
2.5 Crosscorrelation Function 

The crosscorrelation function of two variables, 
g(x,y) and f(x,y), is defined by 

-x/2 -Y/2 

where the ' I + "  subscript after the g indicates the incremented 
variable. An equivalent representation is 

2.6 Power Spectral Density Function 
The power spectral density function (PSD) , Pg (kxtky) , 

of a variable g(x,y) is defined as the Fourier transform of the 
autocorrelation function of g(x,y); thus, 

W 
- 2 n  j (kxx+k y) 

dxdy (2.10) 

As mentioned in Section 2.5, the autocorrelation function, and 
hence the PSD function, are usually associated with stochastic 
variables rather than deterministic variables. The term "power" 
in PSD does not in general indicate that the PSD function has 
units of mechanical or electrical power. A good physical 
interpretation of PSD is given by Lee [ 6 ] .  From E q s .  (2.10) and 
(2.1) 
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--m 

Combining Eqs. (2.11) and ( 2 . 6 )  leads to an alternate way of 
determining the mean square value of g (x,y) : 

--m 

A cross-power spectral density function can also be defined; 

2.7 Further Input/Output Relationships 
Eq. (2.3) is a direct input/output relationship which 

is advantageous when dealing with deterministic variables. 
Stochastic variables, however, are represented by correlation 
and/or PSD functions and it is therefore helpful to write down 
the input/output relations governing these quantities. If the 
input variable gi(x,y) of Figure 2.2 has an autocorrelation 
function A (x,y) then it can be shown that [ 6 , 8 1  

gi 

where h(x,y) is the impulse response function of the system 
an6 the asterisk represents the convolution operation; i.e., 

(2.11) 

(2.12) 

(2.13) 
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It may also be shown that [8,91 

(2 .14 )  

(2 .15 )  

and 

The corresponding input/output relationships for the PSD 
functions are found by taking the Fourier transform of 
E q s .  (2.13) , ( 2 . 1 4 )  and ( 2 . 1 5 ) :  

(2 .16 )  

(2.17) P = P H(kx,k 1 gi+go i Y 
and 

(2 .18 )  

function of the system and the 
the complex conjugate unless 

where H(kx,k ) is the transfer 
bar over a function represents 

Y 

otherwise stated. The advantage of the use of the PSD - trans- 
fer function representation over that of the corresponding 
correlation relationship is that one substitutes multiplication 
for convolution. 

2.8  Sampled Functions 
A few properties of sampled functions are required 

for the analysis of the scanning system. Some of these properties 
are derived by various methods in References 10, 11 and 1 2 .  They 
are rederived in Appendices A and B using a more unified approach. 
For simplicity functions of a single variable will be discussed; 
the extension to functions of two or more variables is straight- 
forward. It is assumed that a function which is sampled at discrete 
intervals, a distance ti apart, may be represented by 
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( 2 . 1 9 )  

where t h e  t i l d e  over t h e  t i n d i c a t e s  t h a t  g ( t )  i s  sampled a t  
d i s c r e e t  v a l u e s  of t. (The advantage of t h i s  n o t a t i o n  becomes 

clear when sampling f u n c t i o n s  of two o r  more v a r i a b l e s . )  Based 

on E q .  ( 2 . 1 9 )  t h e  fo l lowing  p r o p e r t i e s  of sampled f u n c t i o n s  
a r e  d e r i v e d  i n  Appendix A. I f  a sampled f u n c t i o n  g ( 2 )  can be 

r e p r e s e n t e d  by Eq.  (2.19), then i t s  a u t o c o r r e l a t i o n  f u n c t i o n  

E{g(z)+g(;)  1 ,  t a k e s  t h e  f o r m  

A (2) = E{g(g )+g  (g) 1 = f Ag ( t)  6 ( t / t i - n )  

where A ( t)  i s  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  of g ( t ) .  

The  c r o s s c o r r e l a t i o n  func t ion  of a sampled f u n c t i o n  g ( t )  and 

g 
n=-m 

% 9 

a non-sampled f u n c t i o n  h ( t )  can be shown t o  be equa l  t o  t h e  
c r o s s c o r r e l a t i o n  f u n c t i o n  of t h e  unsampled f u n c t i o n s  g ( t )  and 

h ( t )  : t h a t  i s  (Eq. ( A - 1 7 ) )  

S e t t i n g  g ( t )  = h ( t )  i n  E q .  ( 2 . 2 1 )  g i v e s  

A s  a r e s u l t  of E q s .  ( 2 . 2 0 1 ,  ( 2 . 2 1 )  and ( 2 . 2 2 1 ,  t h e  fo l lowing  

i d e n t i t i e s  a r e  e s t a b l i s h e d  i n  Appendix B. The PSD f u n c t i o n ,  

Sg ( f )  , of a sampled v a r i a b l e  g ($1 can be w r i t t e n  i n  t e r m s  of 

of t h e  a u t o c o r r e l a t i o n  func t ion  a s  ( E q .  ( B - 6 ) )  

( 2 . 2 0 )  

( 2 . 2 1 )  

( 2 . 2 2 )  
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L 

P2(f 1 SAMPLER 

at i )  
D 

-27~  jmf ti 
8 g ( f )  = f A g ( m t i ) e  ti 

where f i s  t h e  F o u r i e r  t ransform v a r i a b l e  a s s o c i a t e d  wi th  t 
and ti i s  t h e  i n t e r v a l  between samples.  The mean squa re  v a l u e ,  

g ( t ) ,  of a sampled f u n c t i o n  g ( t )  can be found from (Eq. ( B - 9 ) )  
2 2 ,  ’L 

( 2 . 2 3 )  

1 / 2 t i  

4 2 %  (t)  = 1 4  P” ( f ) d f  ( 2 . 2 4 )  

- 1 / 2 t i  

F i n a l l y ,  t h e  r e l a t i o n s h i p  between t h e  PSD f u n c t i o n  of a sampled 

q u a n t i t y  g ( 2 )  and t h e  PSD of i t s  non-sampled g e n e r a t o r  g ( t )  i s  

(Eq. ( B - 1 4 ) )  

m 

( 2 . 2 5 )  

FIGURE 2.3 

A s  a r e s u l t  of E q s .  ( 2 . 1 6 )  and ( 2 . 2 5 )  t h e  i n p u t / o u t p u t  r e l a t i o n -  

s h i p  of t h e  system shown i n  F i g u r e  2 . 3  i s  
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p 2 ( f )  = 1 P l ( f - m / t . )  
1 

H ( f - m / t i )  

A l s o ,  assuming t h a t  t h e  s igna l  e n t e r i n g  H ( f )  i n  F i g u r e  2 . 3  

i s  no t  sampled, Eqs. ( 2 . 2 1 ) ,  ( 2 . 1 7 )  and ( 2 . 1 8 )  y i e l d  

a n d  

P ( f )  = P l ( f ) H ( f )  
21+ 

O n  t h e  o t h e r  h a n d ,  i f  a sampler d i d  e x i s t  before H ( f ) ,  t h e n  
it can be demonstrated t h a t  

and 

03 

( 2 . 2 6 )  

( 2 . 2 7 )  

( 2 . 2 8 )  

( 2 . 2 9 )  

( 2 . 3 0 )  
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3.0 SYSTEM MODEL AND ANALYSES 

3.1 General 
Figure 3.1 is a representation of the S - 1 9 2  scanning 

system as it operates aboard the spacecraft. The ground track 
of the spacecraft is the y-direction and the cross-track direction 
is the x-direction. The values of the various parameters in 
Figure 3.1 are consistent with the S - 1 9 2  multispectral scanner. 
The upper loop of Figure 3 . 2  represents the model of the line 
scanning image system used to represent the S - 1 9 2  system. The 
H1, HZ, H3 and H 
components. The kx and k are the spatial frequencies (cycles/ 
ft) associated with the Fourier transform. The action of the 
x-scanner and y-sampler converts the two dimensional signai, 
T ( x , y )  into a one dimensional analog signal. The scan rate v 
can be used to transfer the electrical component's dependency 
on temporal frequency f (Hz) to dependency on kx. 

are the transfer functions of the major system 4 

Y 

As the spacecraft moves over its ground track, the 
target radiance, T(x,y), passes through an aperture H1 which 
scans in the cross-track direction. The circular scanning 
operation is carried out such that concentric bands of the 
ground are scanned. However, since data are taken only over 
120'  of the scan circle (See Figure 3.1), it is assumed that 
there is a linear scan in the x-direction at a constant value 
of y. Hence the total effect of this operation is to scan 
in x and sample in y. The radiance signal is then relayed 
to the detector, H2, which converts it to an electrical signal. 
Various electronics (boost circuit, filter, etc.) follow the 
detector and are lumped in H3. The output of H3 is then pre- 

pared for digital recording on tape. This involves sampling 
in time (or equivalently, x) and quantization. At some later 



l- a 

w 
I- z 
K 
- 



0 s 
a a  
z w  
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time, this sampled signal is passed through a reconstruction 
filter, H4, which will retrieve the system's representation 
of the original ground radiance scene. 

The lower loop in Figure (3.2) completes the closed 
loop model which is used to compute the scanning system error. 
If the delay were not present in the lower loop, the signal 
delay, through the upper loop would cause us to compare 
two different ground "pictures" taken td seconds apart, adding 
unnecessarily to the error. Thus, the lower loop is delayed 
by td seconds. 

td, 

Note in Figure 3.2 that detector, preamplifier and 
quantization noise are added to the system at the appropriate 
points. Details of the various transfer functions and noise 
power spectra are discussed in Section 4.0. 

3 .2  Ground Radiance Model 
An important aspect of this kind of study is to devise 

an appropriate ground radiance model to represent T(x,y). The 
representation of T(x,y) will a lso  impact the analysis; for 
example, T(x,y) may be deterministic or stochastic. One would 
like to have the flexibility of incorporating the randomness 
of ground detail found in nature and it therefore seems that 
the stochastic approach is the most appropriate. In analogous 
situations, for example, when modeling gust velocities or 
height variations on airport runways, an autocorrelation 
function for the a.c. component of the quantity of interest 
is assumed to take the form 
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In Reference 9, such a form for ground radiance is employed 
and the authors attribute this model to R. C. Clark. The 
complete expression for the autocorrelation of the a.c. 
component of ground radiance used in this paper is identical 
to the Clark model: 

The parameter xT may be thought of as a quantitative distance 
measure between varying ground radiance values. Two important 
properties of this model are apparent. First, since Eq. (3.1) 
represents the a.c. component only, the variance of T(x,y), aT , 
is given by 

2 

where ?; is the mean value of the target radiance. Second, when 

L ARGE 

FIGURE 3.3 
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A s  i l l u s t r a t e d  i n  F igu re  3 . 3 ,  a l a r g e  v a l u e  of xT causes  

AT(x ,y)  t o  d e c r e a s e  s lowly ,  i n d i c a t i n g  good p o i n t  t o  p o i n t  

c o r r e l a t i o n  of r a d i a n c e  va lues  on t h e  ground. Thus, a l a r g e  

x would be a p p r o p r i a t e ,  f o r  example, when one wishes t o  
r e p r e s e n t  d e s e r t  areas where ground d e t a i l  i s  g e n e r a l l y  

uniform over  l a r g e  d i s t a n c e s .  

f u n c t i o n  drops  o f f  r a p i d l y  i n d i c a t i n g  less p o i n t  t o  p o i n t  

c o r r e l a t i o n .  Th i s  might occur ,  f o r  example, when f l y i n g  over  

suburban a r e a s  which c o n t a i n  b u i l t  up s e c t i o n s  a l t e r n a t i n g  w i t h  

open f i e l d s  and/or wooded a r e a s .  Taking t h e  F o u r i e r  t r ans fo rm 

of Eq. ( 3 . 1 )  g i v e s  t h e  PSD of t h e  a .c .  component of ground 

r a d i a n c e :  

T 

For s m a l l  xT t h e  a u t o c o r r e l a t i o n  

(&)2  
1 

I t  fo l lows  from Eqs. ( 2 . 1 2 )  and ( 3 . 2 )  and may be v e r i f i e d  by 

d i r e c t  i n t e g r a t i o n  t h a t  

P (k  , k  ) d k  dk = 1. 
T X Y  X Y  

2 
0 -  T 

3.3 Analys i s  of t h e  Model 

Having e s t a b l i s h e d  t h e  model f o r  t h e  ground r a d i a n c e  
f u n c t i o n  T ( x , y ) ,  t h e  method of a n a l y s i s  i s  now f i x e d .  The f a c t  

t h a t  T ( x , y )  i s  r e p r e s e n t e d  by a PSD f u n c t i c n  means t h a t  t h e  

t o t a l  system error w i l l  a l s o  be d e r i v e d  i n  t e r m s  of a PSD f u n c t i o n .  

I n t e g r a t i n g  t h e  error PSD according t o  Eq. ( 2 . 1 2 )  y i e l d s  t h e  

mean squa re  and,  i n  t u r n ,  t h e  r m s  v a l u e  of t h e  e r r o r .  For 

several r e a s o n s ,  e s p e c i a l l y  when d e a l i n g  wi th  n o i s e  i n p u t s ,  it 
is  advantageous t o  d e r i v e  t h e  e x p r e s s i o n  f o r  t h e  a u t o c o r r e l a t i o n  

f u n c t i o n  of t h e  e r r o r  and then t o  apply  E q .  ( 2 . 1 0 )  t o  o b t a i n  t h e  
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the error PSD. If T' is the actual radiance of the ground scene 

after delay, as in Figure 3.2, it follows that the autocorrelation 
function of the error, A&, can be expressed by 

= E{T'+T'} + E{T T } - E{T'+T4} - E{T'T4+} 4+ 4 

- - 
= AT,+AT 4 'T ' +T4 'TIT4+ 

Taking the Fourier transform of Eq. (3.4) leads to 

P p = p  + p  - p  - 
E T' T4 T' +T4 T'T4+ 

The input/output relationships of Section 2 are now used to 
evaluate the various terms in Eq. (3.4). It follows directly 
from Eq. (2.13) and Figure 3.2 that 

(3.4) 

( 3 . 5 )  

where d(x) is the impulse response function of the delay and 
AT(x,y) is the target radiance autocorrelation function. 
the Fourier transform of Eq. (3.6) yields, from Eqs. (2.10) and 
(2.16) , 

Taking 

2 
(k ,k 1 = ID(kx) I PT(kx,ky) (3 07) 'T' x y 

where D(k ) is the transfer function of the delay and P (k ,k ) 

is the input radiance PSD function. It is well known (see 
Section 4.10) that 

X T X Y  
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i t  so that 
- 1  

The evaluation of AT (x,y) is in principle identical to the 

evaluation of A (x,y) but more complicated. From Eq. (2.13) 
and Figure 3.2 it follows that 

4 
TI 

q! q ,  % %  (x,y) = [ECT3(x,y)+T3(x,y) 1 + A ixi j *h  h,yi*n4i-x,-y) 9 4 
(3 9) 

% %  ' L ' L  where E{T (x,y) T (x,y) 1 is the autocorrelation function of the 
doubly sampled quantity T3 (x,y), A (x) is the autocorrelation 
function of the quantization noise and h4(x,y) is the impulse 
response function of the reconstruction filter. The effect of 
the x-sampler on EIT, (x,y)+T3(x,y) 1 is represented by (see 
E q .  (2.20)) 

3 + 3  

q 

'L % 

Applying Eq. (2.13) to Figure 3.2 leads to 

E{T3 (x,?) T (x,?) } = [E{T2 (X,?)+TZ (X,?) 1 + Ad (X) 1 *h3 (X) *h3 (-XI 
+ 3  

(3.11) 
where A (x) is the autocorrelation function of the detector and 
preamplifier noise. Similarly, 

d 
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c 

Substituting the results of E q s .  (3.10) through (3.14) into 
Eq. (3.9) gives 

Taking the Fourier transform of Eq. (3.15) leads to the PSD 
function of the output signal of the scanning system. Although 
composed of many more terms, the result is basically the result 
Of Eq. (2.26). Thus, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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2 
H (k  - -,k n - -)H m (k - -)H n (k - y) n 

i 1 x xi y y i  2 x x i  3 x 

n m 

T x x i y  i 
X P  (k - -,k - -) 

X 

7 I i -  

where P (k ) and P (k  ) a r e  r e s p e c t i v e l y  t h e  d e t e c t o r - p r e -  

a m p l i f i e r  n o i s e  PSD and q u a n t i z a t i o n  n o i s e  PSD. The n e x t  s t e p  
i s  t o  compute t h e  c r o s s c o r r e l a t i o n  t e r m s  C T l  i n  Eq. ( 3 . 4 ) .  

The procedure  i s  s i m i l a r  t o  t h a t  used t o  d e r i v e  Eq. (3 .16)  b u t  

t h e  i n p u t / o u t p u t  r e l a t i o n s h i p s  are  d i f f e r e n t .  T o  c l a r i f y  t h e  

p rocedure ,  F i g u r e  3.2 w i l l  be c u t  a t  t h e  comparator t o  i n d i c a t e  

t h e  d i r e c t  l i n k  between T 4 ( x , y )  and T ' ( x , y ) ;  see F i g u r e  3.4.  

d x  q x  

+ 4  

(3.16) 
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FIGURE 3.4 

From Figure 3 . 4  and Eq. (2.14) it follows that 

where C (x)  is the crosscorrelation function of ' T '  ( x , y )  
T'+q 

and the quantizing noise. If it is assumed that signal and 
noise are not correlated, then Eq. ( 3 . 1 7 )  becomes 

( 3 . 1 7 )  

(3 .18)  

From Eq. ( 2 . 2 1 )  it follows that 
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It will now be assumed at the outset that detector-preamplifier 
noise is not correlated with the. sigpal; then Eq. (2.14) gives 

Next, from Eq. (2.14), 

Continuing through the aperture, 

Combining Eqs. (3.19) through (3.24) with Eq. (3.18) leads 
to 

=AT*d (x) *hl (-x,-y)*h2 (-x) *h3 (-X) *h4 (-Xt-Y) 'T~+T~ 

Taking the Fourier transform of Eq. (3.25) gives a result 
similar to Eq. (2.17); thus, 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3 - 2 5 )  

(3.26) 
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In t roduc ing  a t r a n s f e r  f u n c t i o n  f o r  an  "advance" c i r c u i t ,  

A(kx)  , it is  noted  t h a t  

(3.27) 

=PTA(k )E (k , k  )H2(kx)H3(kx)H ( k  , k  1 (3.28) 
'T' + T ~  x l x y  4 X Y  

I n  a s i m i l a r  f a s h i o n ,  it can be  shown t h a t  

' T ~ T ~ +  =P# ( kx 1 H1 ( kx ky H2 ( kx H3 ( kx H4 ( kx ky (3.29) 

S u b s t i t u t i n g  Eqs. (3.29), (3.28), (3.16) and (3.8) i n t o  Eq. (3 .5 )  

g i v e s  t h e  PSD f u n c t i o n  of t h e  e r r o r ,  P E l  i n  t h e  form 

+lH (k , k  ) I 2  f I H  (k - -,k n - -)H m (k - - ) H  n (k - 
i 1 x yi y y i  2 x x i  3 x x 

n=-m m=-m 
4 X Y  

n m 
''T x x y yi i 

(k - -,k - -) 

(3.30) 

where R e [  3 i n d i c a t e s  t h e  r e a l  p a r t  i f  t h e  q u a n t i t y .  

The f i r s t  t h r e e  t e r m s  of Eq. (3.30) can be combined so t h a t  

P E  (kx, k becomes 
Y 
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P =PT(kx,k ) 
E y 

H H H H A- 1 2 3 4  

n m 
T x xi’ y yi XP (k - - k - -) 

Eq. (3.31) conveniently breaks out into four distinct terms. 
The first two are termed the fidelity PSD terms, one being 
the classical fidelity term and the other the contribution 
due to sampling (also known as the aliasing terms). The third 
and fourth terms are the contributions to the error due to 
detector-preamplifier noise and quantizing noise. 
square error, E ~ ,  from E q .  

The mean 
(2 .121,  is 

W 

(3.31) 

(3.32) 
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where the fidelity error is 

03 

-03 

n m - -,k n - -) m dk dk 2 
XH (k - -,k - -) 1 P (k 

T x x  Y Y i  X Y  i 4 x xi Y Yi 

the detector-preamplifier noise error is 

and the quantizing noise error is 

The rms error is formed from Eq. (3.32): 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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T h e  nex t  s t e p  i s  t o  normalize the  r m s  e r r o r  w i t h  r e s p e c t  t o  

t h e  mean v a l u e  of ground r ad iance .  

3 . 4  Mean Targe t  Radiance 

A v a l u e  f o r  mean t a rge t  r a d i a n c e ,  ?, i s  now d e r i v e d  

so  t h a t  i t  may be used a s  a normalizing f a c t o r  f o r  t h e  r m s  
e r r o r .  The equa t ion  f o r  v a r i a n c e ,  E q .  ( 3 . 2 ) ,  may be expanded 

i n  t h e  form 

0 2=E{ (T(x ,y ) -T)  - 2  l=E{T 2 ( x , y )  )-2E{T(x,y)?)+E{T - 2  1 
T 

=1 

where  T i s  t h e  mean v a l u e .  C l e a r l y ,  

- 
2 2 E{T ( x , y ) )  = T 

( 3 . 3 7 )  

( 3 . 3 8 )  

- 
where T 2  i s  t h e  mean s a u a r e  va lue  of r a d i a n c e .  A l s o ,  

where T2 i s  t h e  squa re  of t h e  mean v a l u e  of r a d i a n c e .  F i n a l l y ,  

E ( ? 2 )  = T2 

s i n c e  T i s  a c o n s t a n t .  S u b s t i t u t i n g  Eqs. ( 3 . 4 0 ) ,  ( 3 . 3 9 )  and 

( 3 . 3 8 )  i n t o  ( 3 . 3 7 )  y i e l d s  

I t  i s  now assumed t h a t  t h e  range of expected r a d i a n c e  v a l u e s  

‘ a 7 i l l  be equa l  t o  t h e  mean r ad iance ;  t h a t  i s ,  

( 3 . 4 0 )  

( 3 . 4 1 )  

AT = ? ( 3 . 4 2 )  
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Furthermore, it is assumed that all values are equally probable. 
That is, if f(T) is the probability density function for T(x,y), 
then 

- -  1 f (T) = - - 
T 

(const.), T-T/2<T - ( x , y )  - <T+?/2 

and 
f (T) = 0, all other values of T 

( 3 . 4 3 )  1 

Note that the required condition of probability density functions 
is satisfied: 

3?/2 

f (T)dT = - dT f 1 

1;/2 
-w 

- 
2 The mean square value of radiance, T , can be computed from 

W 
fl  

2 2 dT = T - 2  (24) 26  
T 

T = 1 f(T)T dT = T 
- 

T/2 --m 

Combining ( 3 . 4 4 )  and ( 3 . 4 1 )  

T2 = 12 
or 

This value of mean radiance can be used to normalize the rms 
error; thus, dividing through Eq. ( 3 . 3 6 )  by ? gives 

1 / 2  - - 2  - 
E = (Ef + Ed2 + E 2 ,  

9 

( 3 . 4 4 )  

( 3 . 4 5 )  

( 3 . 4 6 )  
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where E is the total normalized rms system error; t h u s ,  

and 

(3.47) 

(3.48) 

(3.49) 

(3.50) 
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. 

4.0 DETAILS OF SYSTEM PARAMETERS FOR THE S-192  SCANNER 

4.1 Signal-to-noise Ratio of the Detector 

The detector signal-to-noise ratio must be established 
so that it may be used to scale the detector noise PSD function 
described in Section 4.4. The signal-to-noise ratio is obtained 
directly from projected or measured NEAp values of the particular 
channels. Due to the stochastic representations of noise and 
signal, NEAp will be defined as the ratio of rms noise, n, to 

rms signal, (T ) , and, therefore Fs a direct in-Jcrse of a 
signal-to-noise ratio. From this definition, 

- 

2 1 /2  

2 1/2 15-1 = P.!E,p 

171 
and it follows from Eqs. (3.41) and (3.45) that 

7 - 
n = (1’13 ) NEAp 

where is found from 

m 

2 
-2 Pd(f)lH3(f)] df ( 4 . 2 )  

0 2 The constant a in Eq. (4.2) is the scale factor to be determined. 
Combining Eqs. (4.1) and (4.2) , lead to 

( \/13 1 NEAp 
m 

f 2 
(4.3) 
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1 - -  T -  pc 2nfr 

P r o j e c t e d  v a l u e s  of NEAp f o r  the  S-192 M u l t i s p e c t r a l  Scanner 
can be found i n  Reference 4. A s  shown i n  S e c t i o n  4.4, a2  i s  
used a s  a scale f a c t o r  f o r  t h e  d e t e c t o r - p r e a m p l i f i e r  n o i s e  
PSD. Th i s  i s  how NEAp i s  inco rpora t ed  d i r e c t l y  i n t o  t h e  over-  

a l l  r m s  system e r r o r .  

4 . 2  Detector Parameters  

Photoconduct ive T i m e  Constant:  The frequency a t  which 

t h e  d e t e c t o r  r e s p o n a i v i t y  begins  t o  r o l l  o f f  i s  d e s i g n a t e d  

f . I t  i s  r e l a t e d  t o  t h e  photoconduct ive t i m e  c o n s t a n t ,  T 

through 
PC r 

(4.4) 

(See F i g u r e  4.1 f o r  a r e p r e s e n t a t i o n  of d e t e c t o r  r e sponse . )  

A c t u a l  S-192 d e t e c t o r s  have va lues  of T i n  t h e  neighborhood 
of 40u seconds.  

PC 

D e t e c t i v e  T i m e  C o n s t a n t :  The frequency a t  which g e n e r a t i o n  - 
recombina t ion  n o i s e  i n t e r s e c t s  t h e  Johnson n o i s e  l e v e l  i s  r e f e r e d  

t o  a s  f d .  
th rough 

The d e t e c t i v e  t i m e  c o n s t a n t ,  T ~ ,  i s  r e l a t e d  t o  f d  

1 T -  - -  
d 2 T f d  

(4 5) 

Values  of -rd of 111 second a r e  claimed f o r  t h e  S-192 d e t e c t o r s .  

4.3 Required System Bandwidth 

The system bandwidth i s  based on t h e  sampling r a t e  

(Samples/IFOV*) and o r b i t a l  parameters  of t h e  Skylah s p a c e c r a f t .  

*IFOV - Ins t an taneous  F i e l d  of V i e w  



W 
2 
0 z 
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It is derived by taking half the information bandwidth of the 
system. For S-192, taking 1 sample/IFOV, it can be shown that 
the required system electrical bandwidth, fo, is 

(4 6 )  fo = 167 KHz 

4.4 Detector - PreamDlifier Noise Bandwidth 
The detector-preamplifier noise PSD, Pd(f), can be 

represented by [3,41 

(4 .7 )  

where f is frequency in Hertz, a is the constant defined in 
E q .  (4.3) and b is a constant involving a number of factors 
such as temperature of the detectors, temperature of the 
transistors, detector resistance, etc. [4] The relationship 
between the temporal frequency f, the x-spatial frequency, 
kx, and the scanning rate along the x direction, v, is 

f = v k x  

Thus, E q .  (4.7) can be written 

(4.9) 

where kxr = fr/V 

and 
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Actually, one more operation is required on Eq. (4.9) before 
it can be substituted into Eq. ( 3 . 3 4 ) .  The represention of 
Eq. ( 4 . 9 )  is based on the one dimensional character of the 
detector-preamp noise and is really suited for evaluation 
by a one dimensional integration in kx. Therefore, Eq. (4.9) 
should be normalized by a factor 

4 . 5  Quantization Noise PSD 

The mean square error due to quantizing is given  by 
[131  

where n is the number of bits assigned to each quantizing 
level and AT is, as defined in Section 3 . 4 ,  the expected 
range of radiance values. The normalized mean square value 
of quantizing error is 

- 2  

or, recalling Eq. ( 3 . 4 2 1 ,  

- 2  
9 

E 

(4.10) 

(4.11) 
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Since  E: can be computed d i r e c t l y ,  t h e r e  i s  no n e c e s s i t y  t o  
c o n s t r u c t  a PSD f u n c t i o n ,  P for  q u a n t i z i n g  n o i s e .  A c t u a l l y ,  

P 

4.6 Aper ture  T r a n s f e r  Funct ion 

q 
q '  

s imply se rved  as a formalism i n  t h e  d e r i v a t i o n  of E q .  ( 3 . 3 5 ) .  
q 

The system a p e r t u r e  t r a n s f e r  f u n c t i o n  i s  d e f i n e d  as 

t h e  F o u r i e r  t r ans fo rm of a r e c t a n g u l a r  scanning a p e r t u r e  d i v i d e d  

by t h e  area of t h e  a p e r t u r e .  

such an  a p e r t u r e  is  
The impulse r e sponse  f u n c t i o n  of 

0 ,  a l l  other  x and y 
hl(X'Y) = 

The cor responding  t r a n s f e r  f u n c t i o n  i s  

(4.12) 

-4 The a c t u a l  S-192 I F O V  i s  1.82 x 1 0  r a d i a n s  which, u s i n g  Skylab 

o r b i t a l  parameters ,  p r o j e c t s  a 2 6 0 1 x 2 6 0 1  r e c t a n g l e  on t h e  ground. 

Thus,  x =y =260 f t .  d d  
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I .  

4 . 7  De tec to r  T r a n s f e r  Funct ion 

The d e t e c t o r  i s  assumed t o  have a t r a n s f e r  f u n c t i o n  

of t h e  form 

where j = G. Using Eq. ( 4 . 8 ) ,  Eq. ( 4 . 1 4 )  c a n  be w r i t t e n  

1 H (v kx) = 2 l+j (kx/kxr) 

'L 
For t h e  S-192 system, f r  = 4 K H z  meaning t h a t  d e t e c t o r  r e sponse  
beg ins  r o l l i n g  o f f  around 4KHz.  

4.8 De tec to r  E l e c t r o n i c s  Trans fe r  Funct ion  

De tec to r  electronics encompasses t h e  p r e a m p l i f i e r ,  

boos t  c i r c u i t  and f i l t e r .  Each component w i l l  be d e s c r i b e d  

s e p a r a t e l y .  

P r e a m p l i f i e r :  The p r e a m p l i f i e r  t r a n s f e r  f u n c t i o n  i s  
d e s c r i b e d  by 

1 

( 4 . 1 4 )  

(4.15) 

( 4 . 1 6 )  

where, f o r  t h e  5-192, f = 2.0 MHz.  
P 

Boost C i r c u i t :  A s  s t a t e d  i n  S e c t i o n  4 . 7 ,  t h e  d e t e c t o r  
r e s p o n s e  beg ins  r o l l i n g  o f f  a t  4 K H z .  Eq. ( 4 . 6 1 ,  on t h e  

o t h e r  hand, s ta tes  t h a t  t h e  r equ i r ed  system bandwidth f is  0 
1 6 7  KHz. A b o o s t  network i s  t h e r e f o r e  in t roduced  t o  enhance 

t h e  d e t e c t o r  response  over  the  r e q u i r e d  bandwidth. The t r a n s f e r  

f u n c t i o n  f o r  t h e  boos t  network t a k e s  t h e  form 

For  t h e  S-192 system, f b  = 260 K H z .  

( 4 . 1 7 )  
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System Filters: The S-192 has a 2 pole Butterworth 
filter rolling off at the system bandwidth and has, in addition 
3 poles of RC filtering; there is a double pole at fl = 600 KHz 
and a single pole at f2 = 450 K H z .  

function takes the form 
Thus, the filter transfer 

(4.18) 
The simulation has been kept flexible enough to incorporate 
any kind of filtering. Combining Eqs. (4.16), (4.17) and (4.18) 
leads to the transfer r 'unctioii 05 t h e  d e t e ~ t ~ r  e l e ~ t r o ~ i C s ;  

(4.19) 

4.9 Reconstruction Filter 

Ideal reconstruction is assumed; that is, the impulse 
response function of the reconstruction filter is 

where it is recalled that xi and yi are the x and y distances 
between samples. The corresponding transfer function is 

H (k ,k ) = 
4 X Y  { (4.20) 
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4 . 1 0  Delay T r a n s f e r  Func t ion  

The d e l a y  t a k e s  t h e  s t anda rd  form 

-2rrjftd 
D ( f )  = e 

o r ,  from Eq. (4.8) 
-2rrj kxSd 

D (vkx) = e 

where td i s  t h e  d e l a y  i n  t h e  upper loop  of F i g u r e  ( 3 . 2 )  and 

Sd = V t d  i s  an  e q u i v a l e n t  d i s t a n c e  d e l a y .  Note t h a t  

(4.21) 

( 4 . 2 2 )  

2 ID/ = 1. 

4 . 1 1  Paramete r s  A v a i l a b l e  f o r  V a r i a t i o n  

The system parameters  t h a t  w e r e  v a r i e d  i n  t h e  

s i m u l a t i o n  are l i s t e d  below. 

Aper tu re  and S c a l e  Di s t ance  (xT&i: The r a t i o  of xT/xd 
r e p r e s e n t s  t h e  r e s o l u t i o n  c a p a b i l i t y  of t h e  system i n  r e l a t i o n  

t o  a p a r t i c u l a r  ground s c e n e .  
r a d i a n c e  a u t o c o r r e l a t i o n  f u n c t i o n  h a l f  ampl i tude  p o i n t  i s  e q u a l  

t o  t h e  IFOV. 
r e l a t i v e  r e s o l u t i o n  c a p a b i l i t y  of t h e  i n s t r u m e n t  improves and 

t h e  r m s  error shou ld  d e c r e a s e .  For  ground scenes  w i t h  h igh  
i n f o r m a t i o n  c o n t e n t ,  t h a t  is ,  xT/xd < 1, t h e  e r r o r  should  he  

g r e a t e r .  

When xT/xd = 1, t h e  ground 

A s  t h e  r a t i o  xT/xd increases beyond u n i t y ,  i h e  

Scanning/Sampling: I t  i s  n o t  g e n e r a l l y  t r u e  t h a t  i n c r e a s e d  

sampl ing  c o n t i n u e s  t o  improve system accuracy .  Even i n  n o i s l e s s  

sys t ems  t h e r e  are  two f a c t o r s  l i m i t i n g  i n c r e a s e d  accuracy  through 

i n c r e a s e d  sampling.  F i r s t ,  a t h e o r e t i c a l  f a c t o r ,  t h e  Shannon 

sampl ing  theorem [ll], s t a t e s  t h a t  a band l i m i t e d  s i g n a l  w i t h  a 
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finite upper frequency limit of F Hz. can be completely specified 
by sampling at instants of time separated by 1/2F. Although the 
radiance signal represented by Eq. ( 3 . 3 )  is not bandlimited, the 
effect of the aperture function and subsequent filtering (before 
sampling) is to produce an almost bandlimited signal with little 
frequency content above the bandwidth of the S-192 system. Hence 
little improvement in system accuracy should be expected by 
sampling more than twice per IFOV. Second, there is the practical 
consideration of the sampling method in the S-192 scanner. With 
a fixed scan rate v, a particular IFOV is always sampled once in 
the y- direction while increased sampling rates mean that only 
the number nf cross track, or x, samples increases. Thus, additional 
information on the y-dependent portion of the signal is not gained, 
and this places another limit on improvement through sampling. 
These two reasons do not, however, represent the main argument 
against unlimited increase in sampling rates. The utilization 
of an increased number of samples/IFOV requires that the system’ 
bandwidth be proportionately increased. 
to additional boosting of the detector response. Boosting 
beyond the detector frequency fd leads to a disproportional 
increase in noise relative to signal. Thus it is clear that 
an optimum bandwidth and a corresponding optimum sampling rate 
will exist. 

This requirement leads 
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5 . 0  RESULTS OF THE SIMULATION FOR THE S-192 SCANNER 

5 . 1  Simulation OutDut 

The simulation results of the rms error analysis 
include: 

- - normalized rms fidelity error (Eqs. ( 3 . 3 3 )  and €f 
( 3 . 4 8 ) )  : 

- - normalized rms detector-preamp noise error (Eqs. 'd 
( 3 . 3 4 )  and ( 3 . 4 9 ) ) :  

- 
E - normalized rms quantizing noise error (Eqs. ( 3 . 3 5 )  
q 

and ( 3 . 5 0 ) ) :  
- 
E - total normalized rms system error (Eqs. i 3 . 3 6 j  and 

( 3 . 4 7 ) ) .  

For the actual calculation of E Eq. ( 4 . 1 1 )  is used. This 
quantity remains constant for  all cases. In the S-192 systemr 
the number of bits assigned to each quantizing level is n=8; 
thus I 

q' 

- 
E: = , 0 0 1 1 2 8  
q 

Aside from the two major parameter variations discussed in 
Section 4 . 1 1 ,  the results presented are also representative of 
the noise properties of typical channels. Projected [41  
maximum and minimum NEAp channels were selected and a nominal 
(NEAp = 1%) channel was constructed; their properties are 
listed below: 

Channel 1 
Channel 7 
Nominal 

T 
-PC 

NEAo 

44psec lpsec 3 . 0  % 
4 0 p s e c  lpsec 0 . 5 7 %  
4 0 p s e c  lpsec 1 . 0  % 
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5.2 Discuss ion  of R e s u l t s  

V a r i a t i o n  of Reso lu t ion  C a p a b i l i t y  (xT&): F i g u r e  5 . 1  

i l l u s t r a t e s  t h e  expected r educ t ion  i n  Lf  a s  xT/xd i n c r e a s e s  and 

a l s o  i n d i c a t e s  t h e  e f f e c t  of p l ac ing  t h e  d e l a y  i n  t h e  lower loop.* 

The normalized r m s  f i d e l i t y  error drops  below 1 0 %  when xT/xd = 2 

and one sample pe r  IFOV i s  taken.  F igu re  5.2 i l l u s t r a t e s  t h e  

v a r i a t i o n  of t o t a l  r m s  e r r o r  f o r  t h e  t h r e e  channe l s  of i n t e r e s t .  

The e f f e c t  of h ighe r  NEAD is apparent .  

E f f e c t s  of Sampling: F igure  5.3 shows t h e  v a r i a t i o n  of F f ,  
and E wi th  sampling r a t e  f o r  channel  1 when xT/xd i s  uni ty .**  

- 
‘d - 
The f i d e l i t y  e r r o r ,  E ~ ,  drops  s t e a d i l y  wi th  i n c r e a s i n g  sampling 

ra te  u n t i l  it approaches an asymptot ic  v a l u e  of about  1 2 . 7 %  a t  

2 samples p e r  I F O V .  (This  curve i s  t h e  s a m e  f o r  a l l  channels  a s  

it i s  independent  of n o i s e . )  The r e s u l t s  of F i q u r e s  5 .3 ,  5 .4 ,  and 
5.5 r e f l e c t  t h e  f a c t  t h a t  t h e  system bandwidth i s  expanded propor- 

t i o n a t e l y  t o  accommodate t h e  h igher  sampling r a t e s .  A s  a s s e r t e d  i n  

S e c t i o n  4 . 1 1 ,  t h e  r m s  detector-preamp n o i s e  i n c r e a s e s  r a p i d l y  wi th  

i n c r e a s i n g  sampling r a t e  and soon wipes o u t  any improvement i n  
f i d e l i t y  e r r o r .  S i g n i f i c a n t l y ,  f o r  Channel 1, t h e  optimum 
sampling r a t e  (minimum F )  i s  less than  one sample p e r  I F O V .  

F i g u r e  5.4 i l l u s t r a t e s  t h e  effect  of sampling r a t e s  on t h e  

p r o j e c t e d  minimum NEAp channel ,  channel  7 .  H e r e ,  t h e  optimum 

sampling r a t e  is  about  1 . 8  samples pe r  I F O V .  The same in fo rma t ion  

f o r  t h e  nominal channel ,  t h e  one meeting t h e  EIS n o i s e  s p e c i f i c a t i o n  
(NEAp = l%), i s  con ta ined  i n  F igu re  5.5 and t h e  optimum sampling 

*All subsequent  r e s u l t s  i n c l u d e  t h e  d e l a y .  

**The c a s e  xT/xd = 1 is  f e l t  t o  be r e p r e s e n t a t i v e  of 
t h e  k ind  of ground scene  t h e  in s t rumen t  might  be reasonably  expec ted  
t o  handle .  This  can be j u s t i f i e d  by n o t i n g  F i g u r e  5 . 1  which i n d i c a t e s  

t h a t  f o r  v a l u e s  of %/xd less t h a n  u n i t y ,  t h e  f i d e l i t y  e r r o r  i n c r e a s e s  
beyond an a c c e p t a b l e  p o i n t  ( 1 5 % ) .  
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r a t e  i s  seen  t o  be  1 . 3  samples p e r  I F O V .  Because t h e  t o t a l  r m s  
system e r r o r  has  a sha l low minimum, a sampling r a t e  of 1.1 

samples p e r  I F O V  i s  c l o s e  t o  optimum. 
S e v e r a l  r u n s  w e r e  made where sampling r a t e  w a s  v a r i e d  

w h i l e  system bandwidth w a s  held c o n s t a n t  a t  nominal v a l u e .  The 

maximum improvement i n  fo r  t h i s  procedure  w a s  under 0 . 5 % .  

The o r i g i n a l  S-192 d e s i g n  had f o u r  "h igh"  r e s o l u t i o n  channe l s  

( 1 3 0 '  x 1 3 0 ' )  which w e r e  sampled a t  t w i c e  t h e  r a t e  of t h e  "10w" 

r e s o l u t i o n  channels  (260'  x 2 6 0 ' ) .  De tec to r  development problems 

l e d  t o  replacement  of t h e  ' 'high" r e s o l u t i o n  channe l s  w i t h  "low" 

r e s o l u t i o n  channe l s  [ 3 ]  a l though t h e  sampling r a t e  i n  t h e s e  bands 

w a s  l e f t  unchanged t o  avo id  impact ing t h e  t iming  and r e c o r d i n g  
schemes. Thus e i g h t  of iiie channels are being sampled 2,2 k h e s  

p e r  IFOV a l though  t h e i r  bandwidth f i t s  t h e  one sample p e r  I F O V  

v a l u e  ( 1 6 7  KHz). A s  mentioned above, a d d i t i o n a l  sampling wi thou t  

a d d i t i o n a l  bandwidth adds noth ing  t o  system accuracy  b u t  does 
add u n n e c e s s a r i l y  t o  t h e  b i t  r a te .  

f 

F i l t e r i n g :  F i l t e r  v a r i a t i o n s ,  s ay  5 p o l e  But te rwor th  i n s t e a d  

of 2 p o l e  But te rwor th  - 3 pole  RC, do  n o t  s i g n i f i c a n t l y  impact 
o v e r a l l  system e r r o r .  Ground scene  and a p e r t u r e  are t h e  major 

c o n t r i b u t o r s  t o  f i d e l i t y  e r r o r  and changes i n  e q u i v a l e n t  system 
bandwidth of abou t  1 0 %  w i l l  n o t  g r e a t l y  e f f e c t  t h e  f i n a l  r e s u l t .  
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6.0 CONCLUSIONS 

The major conclusions of this study are: 

1. The optimum sampling rate for a channel whose detector 
just meets noise specification is 1.3 samples per I F O V .  

2. The present 5-192 design sampling rate for five of the 
thirteen channels is 1.1 samples per I F O V .  Because the total 

system error has a shallow minimum, the design sampling rate 
is close to optimum. This result is in opposition to the view 
held in some quarters that the S-192 system is digital data 
bandwidth limited. 

3 .  Sampling the remaining eight channels at a rate of 2.2 
samples per IFOV dees rmt impreve sys tem per fo rmance 

4 .  The approach used in this paper to evaluate the performance 
of scanning systems provides an effective, workable tool for 
design and analysis. 
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APPENDIX A 

Theorems on Sampled Functions 

I .  

c 

Several theorems on sampled functions which are used 
in the main portion of this report are proven here. Some of 
the theorems of Appendix A (and of Appendix B), in one form or 
another, appear elsewhere [8,10,11,12]. The reason for repeat- 
ing them here is to present them in a more unified context. 

The following lemmas, necessary in the proofs to follow, 
will be stated. Proofs may be found in Papoulis [lo]. 

Lemma 1: 

f (t) 6 (t-tO) = f (to) 6 (t-tO) 

where -6 (t) is the unit impulse (Dirac delta) function. 
Lemma 2: 

6 (t-tl) * 6  (t-t,) = I 6 (T-tl) 6 (t-T-t2)dT 
-m 

= 6[t-(t +t 1 1  1 2  
Lemma 3:  

6 (t-tO/a) I.1 6(at-t0) = 

( A - l )  

Assuming stationary and ergodic functions, the one 
dimensional autocorrelation and crosscorrelation functions can 
be written f x(t)x(t+r)dt (A-4) E{x+x} = Ax(<) = lim - 2T T-tm -T 



A- 2 

and 

(A-5) 

(A-6) 

Given a function x(t) whose first derivative is piecewise 
continuous and whose amplitude is sampled at intervals of ti; 
the sampled function, x(z), will be represented by 

x(t) r(, = f x(t) 6 (t/ti-m). 

m=-m 

Theorem 1: 
The crosscorrelation function of two sampled functions, 

x(2) and y(x), 

and 

may be represented by* 

(A-8) 

(A-9) 

F 

*The' "expected value" representation of the autocorrelation 
and crosscorrelation functions is superior because it clearly shows 
which quantity is sampled and the independent variable involved 
in the sampling process. 
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Proof: 
From (A-1) and ( A - 3 ) ,  noting that ti>Ot (A-7) and 

(A-8 )  can be written 

x(mti) 6 (t-mti) % x(t) = ti 
m=-m 

and 
m 

(A-10) 

(A-11) 

Substituting (A-10) and (A-11) into (A-5) gives 

f x (mti+kti) 6 lim - 2T I t  i 
T-fm r{ y(kti)6 (r-kti) 

-T k=-m m=-m 

t f f y(kti)x(mti+kti) 6 (T-kti) 6 (t+T-mti-kti)dT 
(A-12) 

lim - 
T-tm 2T i 

m=-m k=-m -T 

Let T = (2N+1) ti. 
- T < T < T  - -  can be replaced with - m < ~ < m  - -  by limiting the sum over k 
from -N to +N; that is, 

Then the limits of the integrand in (A-12) , 

% 
E{x(t)’+ y ( b 1  = 

2 

y (kti)x(mti+kti) 6 (.c-kti) 6 (t+T-mti-kti)dr 
(A-13) 

ti 

-m 
lim (2N+l)ti f f N-+- m=-m k=-N 
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. 

The integral in (A-13) can be evaluated using (A-2) and (A-3): 

6 (T-mti) 6 (t+T-mti-kti)dT = 6 (r-kti) 6 (mti+kti-?-t)dT 
-m -m 

= 6[-t-(kti-mt i i  -kt.)l = 6(-t+mti) = 6(t-mti) 

It is also recalled that an ensemble average may be used to 
compute the crosscorrelation function [ll]; thus 

Substituting (A-15) and (A-14) into (A-13) yields 

or using (A-1) and (A-3), 

m 

A corrollary to this theorem is that the autocorrelation of a 

sampled function may be represented by 

(A-14) 

(A-15) 

(A-16) 

This may be proved by letting x(2) = y(%) in (A-9) and 

recognizing that Cx - - Ax. 
+ 
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Theorem 2: 
% The crosscorrelation of a sampled function, x (t) , 

and a non-sampled function y(t) is 

c 

In words, the fact that one of the terms being correlated is 
sampled does not alter the form of the crosscorrelation 
function. 

Proof: 
Proceeding as in Theorem 1, 

or using (A-1) and (A-3 )  
rn 

Letting T = (2N+1) t. and exchanging limits on m and' T leads to 
1 

N ti 1 x(mti) ( y(t+r) 6 (T-mti)dr (2N+1) ti = lim 
N+m m=, - N -00 

(A-17) 

(A-18) 

(A-19) 
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b 

Recalling E q .  ( 2 . 3 )  and recognizing the ensemble average form 
of the crosscorrelation function, (A-19) leads to 

m=-N 

z c  Q.E.D. 
xy+ 

A corollary to Theorem 2 is that the crosscorrelation function 
of a sampled function x ( 2 )  and its non-sampled generator, x(t), 
is the autocorrelation function of x(t). 
substituting y(t) = x(t) in Eq.  (A-17); thus, 

This is proved by 

(A-20) 



APPENDIX B 

Consequences of the Previous Theorems 

The relationship between the PSD, 3x(f) , of a sampled 
function x(?) and the autocorrelation function Ax(t) will be 
developed. The one dimensional forms of Eqs. (2.8) and (2.9) 
are 

-2njft 
Ax (t) e dt 

Px(f) = i 
-m 

and 
m 

2.rrjft 
a& Ax(t) = J P x i t j e  UL 

-m 

The PSD of the sampled function is found from 

-m 

Substituting (A-16) into (B-3) I 

-2~rjft 
$x(f) = Ax(t)6(t/ti-m)e dt 

-m m=-m 

Using (A-1) and (A-3), 

-2njft 
Px(f) = tiAx (mti) 6 (t-mti) e dt P ?, 

m=-m --a, 



B-2 

R e c a l l i n g  Eq. ( 2 . 3 ) ,  (B-5)  can be w r i t t e n  

I 
- 1 / 2 t i  

-271jfm ti 

ti $ x ( f )  = 7 A x ( m t i ) e  (B-6)  

The i n v e r s e  r e l a t i o n s h i p  i s  e s t a b l i s h e d  as fo l lows .  Mul t ip ly  

1 < f &  -. 1 2mjfp ti bo th  s i d e s  of (B-6) by e and i n t e g r a t e  over  - - 2 t 2  - 2 t l  
I I Then, 

271 j f  (m-p) ti 1 / 2 t i  2 r j f p  t 1 / 2 t i  

Cx (f) e i d f = t i f  [ Ax ( m t i )  e df 

L e t t i n g  

and 

m=-m 2 

4 / 2 t i  

z = 271tif 

dz = 2ntidf 

it can  be shown t h a t  

71 

271 j f  (m-p) ti z (m-p) 
df = 1 2.rr /e 

dz =c:Eit 
-71 

ti 

-1 /2 t i  

, Thus, (B-7 )  l e a d s  t o  

4 / 2 t i  
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Note the important consequence that 

x ( ; ) ~  = Ax(0) Sx (f ) df 
- 1/2 ti 

where x(%)~ is the mean 
x(t) - 

A very useful 

square value of the sampled function 

equation would define the relationship 
between the PSD functions of a sampled and unsampled quantity. 
E q .  (B-3) may be written in the form 

From (A-16), (B-10) becomes 

or using the Bore1 convolution theorem, 

where the asterisk represents convolution. 
It follows directly from (B-1) that 

(B-9) 

(B-10) 

(B-11) 

(B-12) 



B- 4 

' .  
c 

It is proved by Papoulis [lo] that 

m rn 

Combining ( B - l l ) ,  (B-12) and (B-13) gives 

or 

(B-13) 


